Estimating the Region of Attraction for Uncertain Polynomial Systems Using Polynomial Chaos Functions and Sum of Squares Method

نویسندگان

  • Armin Ataei
  • Qian Wang
چکیده

We present a general formulation for estimation of the region of attraction (ROA) for nonlinear systems with parametric uncertainties using a combination of the polynomial chaos expansion (PCE) theorem and the sum of squares (SOS) method. The uncertain parameters in the nonlinear system are treated as random variables with a probability distribution. First, the decomposition of the uncertain nonlinear system under consideration is performed using polynomial chaos functions. This yields to a deterministic subsystem whose state variables correspond to the deterministic coefficient components of the random basis polynomials in PCE. This decomposed deterministic subsystem contains no uncertainty. Then, the ROA of the deterministic subsystem is derived using sum of squares method. Finally, the ROA of the original uncertain nonlinear system is derived by transforming the ROA spanned in the decomposed deterministic subsystem back to the original spatial-temporal space using PCE. This proposed framework on estimation of the robust ROA (RROA) is based on a combination of PCE and SOS and is specially useful, with appealing computation efficiency, for uncertain nonlinear systems when the uncertainties are non-affine or when they are associated with a specific probability distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local stability analysis using simulations and sum-of-squares programming

The problem of computing bounds on the region-of-attraction for systems with polynomial vector fields is considered. Invariant subsets of the region-of-attraction are characterized as sublevel sets of Lyapunov functions. Finite-dimensional polynomial parametrizations for Lyapunov functions are used. A methodology utilizing information from simulations to generate Lyapunov function candidates sa...

متن کامل

Stability Region Analysis using composite Lyapunov functions and Sum of Squares Programming

We propose using (bilinear) sum-of-squares programming for obtaining inner bounds of regionsof-attraction and outer bounds of attractive invariant sets for dynamical systems with polynomial vector fields. We search for composite Lyapunov functions, comprised of pointwise maximums and pointwise minimums of polynomial functions. Excellent results for some examples are obtained using the proposed ...

متن کامل

Constructing Piecewise Polynomial Lyapunov Functions Over Arbitrary Convex Polytopes Using Handelman Basis

We introduce a new algorithm to check the local stability and compute the region of attraction of isolated equilibria of nonlinear systems with polynomial vector fields. First, we consider an arbitrary convex polytope that contains the equilibrium in its interior. Then, we decompose the polytope into several convex sub-polytopes with a common vertex at the equilibrium. Then, by using Handelman’...

متن کامل

Estimation of region of attraction for polynomial nonlinear systems: a numerical method.

This paper introduces a numerical method to estimate the region of attraction for polynomial nonlinear systems using sum of squares programming. This method computes a local Lyapunov function and an invariant set around a locally asymptotically stable equilibrium point. The invariant set is an estimation of the region of attraction for the equilibrium point. In order to enlarge the estimation, ...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012